Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1206219950020030587
Journal of Korean Academy of Physical Therapy Science
1995 Volume.2 No. 3 p.587 ~ p.598
The Effects of Microcurrent Electrical Neuromuscular Stimulation on Delayed Onset Muscle Soreness, Serum Creatine Kinase, and Maximal Voluntary Isometric Contraction: A Preliminary Report
Kim Tae-Youl

Choi Eun-Young
Yoon Hee-Jong
Abstract
The purpose of this study was to test the microcurrent electrical neuromuscular stimulation on muscle soreness, serum creatine kinase levels and force deficits evident following a high-intensity eccentric exercise bout. 10 volunteer male subjects were randomly assigned to a treatment group or to a control group. Exercise consisted of high-intensity eccentric contractions of the elbow flexors. Resistance was reduced as subjects fatigued, until they reached exhaustion. Muscle soreness rating was determined using a visual analog scale. Serum creatine kinase levels were analyzed using a blood sample. Force deficits were determined by measures of maximal voluntary isometric contraction at 90¢ª of elbow flexion on a Orthotron II dynamometer. Muscle soreness rating, serum creatine kinase levels and maximal voluntary isometric contraction were determined at the before exercise and again at 24 and 48 hours postexericse. Treatments were applied immediately following exercise. The control group subjects rested following their exercise bout. Statistical analysis showed significant increases in muscle soreness rating and significant decreases in maximal voluntary isometric contraction when the before exercise was compared with 24 and 48 hour measures(p<0.01). No significant effects were observed between groups in muscle soreness rating and maximal voluntary isometric contraction(p>0.05). Highly significants differences in serum creatine kinase levels were found using on Analysis of variance(ANOVA) repeated measures between groups for each time cycles(p<0.001). This modality may have benefits when used early stage in the muscle damage.
KEYWORD
Delayed onset muscle soreness, Microcurrent electrical neuromuscular stimulation
FullTexts / Linksout information
 
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)